Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Chem Biol Interact ; 395: 111009, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641145

RESUMO

The escalating prevalence of lung diseases underscores the need for innovative therapies. Dysbiosis in human body microbiome has emerged as a significant factor in these diseases, indicating a potential role for synbiotics in restoring microbial equilibrium. However, effective delivery of synbiotics to the target site remains challenging. Here, we aim to explore suitable nanoparticles for encapsulating synbiotics tailored for applications in lung diseases. Nanoencapsulation has emerged as a prominent strategy to address the delivery challenges of synbiotics in this context. Through a comprehensive review, we assess the potential of nanoparticles in facilitating synbiotic delivery and their structural adaptability for this purpose. Our review reveals that nanoparticles such as nanocellulose, starch, and chitosan exhibit high potential for synbiotic encapsulation. These offer flexibility in structure design and synthesis, making them promising candidates for addressing delivery challenges in lung diseases. Furthermore, our analysis highlights that synbiotics, when compared to probiotics alone, demonstrate superior anti-inflammatory, antioxidant, antibacterial and anticancer activities. This review underscores the promising role of nanoparticle-encapsulated synbiotics as a targeted and effective therapeutic approach for lung diseases, contributing valuable insights into the potential of nanomedicine in revolutionizing treatment strategies for respiratory conditions, ultimately paving the way for future advancements in this field.

2.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-37259345

RESUMO

Polycystic Ovarian Syndrome (PCOS) comprises a set of symptoms that pose significant risk factors for various diseases, including type 2 diabetes, cardiovascular disease, and cancer. Effective and safe methods to treat all the pathological symptoms of PCOS are not available. The gut microbiota has been shown to play an essential role in PCOS incidence and progression. Many dietary plants, prebiotics, and probiotics have been reported to ameliorate PCOS. Gut microbiota shows its effects in PCOS via a number of mechanistic pathways including maintenance of homeostasis, regulation of lipid and blood glucose levels. The effect of gut microbiota on PCOS has been widely reported in animal models but there are only a few reports of human studies. Increasing the diversity of gut microbiota, and up-regulating PCOS ameliorating gut microbiota are some of the ways through which prebiotics, probiotics, and polyphenols work. We present a comprehensive review on polyphenols from natural origin, probiotics, and fecal microbiota therapy that may be used to treat PCOS by modifying the gut microbiota.

3.
Gels ; 9(3)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36975693

RESUMO

The current study describes a suppository base composed of aqueous gelatin solution emulsifying oil globules with probiotic cells dispersed within. The favorable mechanical properties of gelatin to provide a solid gelled structure, and the tendency of its proteins to unravel into long strings that interlace when cooled, lead to a three-dimensional structure that can trap a lot of liquid, which was exploited herein to result in a promising suppository form. The latter maintained incorporated probiotic spores of Bacillus coagulans Unique IS-2 in a viable but non-germinating form, preventing spoilage during storage and imparting protection against the growth of any other contaminating organism (self-preserved formulation). The gelatin-oil-probiotic suppository showed uniformity in weight and probiotic content (23 ± 2.481 × 108 cfu) with favorable swelling (double) followed by erosion and complete dissolution within 6 h of administration, leading to the release of probiotic (within 45 min) from the matrix into simulated vaginal fluid. Microscopic images indicated presence of probiotics and oil globules enmeshed in the gelatin network. High viability (24.3 ± 0.46 × 108), germination upon application and a self-preserving nature were attributed to the optimum water activity (0.593 aw) of the developed composition. The retention of suppositories, germination of probiotics and their in vivo efficacy and safety in vulvovaginal candidiasis murine model are also reported.

4.
Crit Rev Ther Drug Carrier Syst ; 40(1): 49-100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36374841

RESUMO

Peptides are emerging as a promising candidate for therapeutic as well as diagnostic applications within the domain of clinical and scientific research. They are recognized for being highly selective, sensitive and efficacious with minimal or no toxicity. Small size, non-immunogenicity, ease of synthesis and huge scope of modification are some of the well-established properties of peptides, which make them an excellent alternative to not only small drug molecules but also to protein-based biopharmaceuticals such as antibodies and enzymes. The attractive pharmacological profile and intrinsic properties of peptides also make them an interesting diagnostic tool for imaging at the molecular and cellular levels. Molecular imaging coupled with targeted therapy using peptides as theranostics is a two-edged sword. Besides, traditional peptide formats, multifunctional newer peptide designs with improved pharmacokinetics and targetability are also being explored presently. In this review, we come up with a comprehensive summary of the latest progress on peptides and their potential applications in therapeutics and diagnosis for infectious and non-infectious diseases. The last part of the review discusses suitable carrier systems for the delivery of peptides along with highlighting the future challenges.


Assuntos
Medicina de Precisão , Nanomedicina Teranóstica , Humanos , Nanomedicina Teranóstica/métodos , Sistemas de Liberação de Medicamentos/métodos , Imagem Molecular , Peptídeos
5.
Front Chem ; 9: 669169, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34109155

RESUMO

Detection of cancer at an early stage is one of the principal factors associated with successful treatment outcome. However, current diagnostic methods are not capable of making sensitive and robust cancer diagnosis. Nanotechnology based products exhibit unique physical, optical and electrical properties that can be useful in diagnosis. These nanotech-enabled diagnostic representatives have proved to be generally more capable and consistent; as they selectively accumulated in the tumor site due to their miniscule size. This article rotates around the conventional imaging techniques, the use of carbon based nanodots viz Carbon Quantum Dots (CQDs), Graphene Quantum Dots (GQDs), Nanodiamonds, Fullerene, and Carbon Nanotubes that have been synthesized in recent years, along with the discovery of a wide range of biomarkers to identify cancer at early stage. Early detection of cancer using nanoconstructs is anticipated to be a distinct reality in the coming years.

6.
Biochem Biophys Rep ; 26: 100962, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33763604

RESUMO

Quantum dots (QDs) are nanocrystals of semiconducting material possessing quantum mechanical characteristics with capability to get conjugated with drug moieties. The particle size of QDs varies from 2 to 10 nm and can radiate a wide range of colours depending upon their size. Their wide and diverse usage of QDs across the world is due to their adaptable properties like large quantum yield, photostability, and adjustable emission spectrum. QDs are nanomaterials with inherent electrical characteristics that can be used as drug carrier vehicle and as a diagnostic in the field of nanomedicine. Scientists from various fields are aggressively working for the development of single platform that can sense, can produce a microscopic image and even be used to deliver a therapeutic agent. QDs are the fluorescent nano dots with which the possibilities of the drug delivery to a targeted site and its biomedical imaging can be explored. This review is mainly focused on the different process of synthesis of QDs, their application especially in the areas of malignancies and as a theranostic tool. The attempt is to consolidate the data available for the use of QDs in the biomedical applications.

7.
Eur J Pharm Biopharm ; 160: 100-124, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33497794

RESUMO

Present study addresses the challenge of incorporating hydrophilic streptomycin sulphate (STRS; log P -6.4) with high dose (1 g/day) into a lipid matrix of SLNs. Cold high-pressure homogenization technique used for SLN preparation achieved 30% drug loading and 51.17 ± 0.95% entrapment efficiency. Polyethylene glycol 600 as a supporting-surfactant assigned small size (218.1 ± 15.46 nm) and mucus-penetrating property. It was conceived to administer STRS-SLNs orally rather than intramuscularly. STRS-SLNs remained stable on incubation for varying times in SGF or SIF. STRS-SLNs were extensively characterised for microscopic (TEM and AFM), thermal (DSC), diffraction (XRD) and spectroscopic (NMR and FTIR) properties and showed zero-order controlled release. Enhanced (60 times) intracellular uptake was observed in THP-1 and Pgp expressing LoVo and DLD-1 cell lines, using fluorescein-SLNs. Presence of SLNs in LoVo cells was also revealed by TEM studies. STRS-SLNs showed 3 times reduction in MIC against Mycobacterium tuberculosis H37RV (256182) in comparison to free STRS. It also showed better activity against both M. bovis BCG and Mycobacterium tuberculosis H37RV (272994) in comparison to free STRS. Cytotoxicity and acute toxicity studies (OECD 425 guidelines) confirmed in vitro and in vivo safety of STRS-SLNs. Single-dose oral pharmacokinetic studies in rat plasma using validated LCMS/MS technique or the microbioassay showed significant oral absorption and bioavailability (160% - 710% increase than free drug).


Assuntos
Antituberculosos/administração & dosagem , Portadores de Fármacos/química , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Estreptomicina/administração & dosagem , Administração Oral , Animais , Antituberculosos/química , Antituberculosos/farmacocinética , Antituberculosos/toxicidade , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/química , Macrófagos/metabolismo , Masculino , Testes de Sensibilidade Microbiana , Nanopartículas/química , Tamanho da Partícula , Ratos , Solubilidade , Estreptomicina/química , Estreptomicina/farmacocinética , Estreptomicina/toxicidade , Células THP-1 , Testes de Toxicidade Aguda
8.
Artigo em Inglês | MEDLINE | ID: mdl-33178666

RESUMO

Curcumin, very rightly referred to as "a wonder drug" is proven to be efficacious in a variety of inflammatory disorders including cancers. Antiaging, anti-inflammatory, antioxidant, antitumor, chemosensitizing, P-gp efflux inhibiting, and antiproliferative activity are some of the striking features of curcumin, highlighting its importance in chemotherapy. Curcumin inhibits Bcl-2, Bcl-XL, VEGF, c-Myc, ICAM-1, EGFR, STAT3 phosphorylation, and cyclin D1 genes involved in the various stages of breast, prostate, and gastric cancer proliferation, angiogenesis, invasion, and metastasis. The full therapeutic potential of curcumin however remains under explored mainly due to poor absorption, rapid metabolism and systemic elimination culminating in its poor bioavailability. Furthermore, curcumin is insoluble, unstable at various pH and is also prone to undergo photodegradation. Nanotechnology can help improve the therapeutic potential of drug molecules with compromised biopharmaceutical profiles. Solid lipid nanoparticles (SLNs) are the latest offshoot of nanomedicine with proven advantages of high drug payload, longer shelf life, biocompatibility and biodegradability, and industrial amenability of the production process. We successfully developed CLEN (Curcumin encapsulated lipidic nanoconstructs) containing 15 mg curcumin per ml of the SLN dispersion with highest (till date, to our knowledge) increase in solubility of curcumin in an aqueous system by 1.4 × 106 times as compared to its intrinsic solubility of 11 ng/ml and high drug loading (15% w/v with respect to lipid matrix). Zero-order release kinetics observed for CLEN versus first order release for free curcumin establish controlled release nature of the developed CLEN. It showed 69.78 times higher oral bioavailability with respect to free curcumin; 9.00 times higher than a bioavailable marketed formulation (CurcuWIN®). The formulation showed 104, 13.3, and 10-times enhanced stability at pH 6.8, 1.2, and 7.4, respectively. All these factors ensure the efficacy of CLEN in treating cancer and other inflammatory diseases.

9.
Pharmacol Res ; 159: 104954, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32492490

RESUMO

Fecal microbiota transplant (FMT) has seen a historic emergence in last decade with its sojourn recently entering into a chequered path, due to a few reports of infection and subsequent mortality. Though FMT has been extensively reported, there is no comprehensive report on the delivery routes available for this non-pharmacological treatment option. Safety, efficacy and cost of FMT not only depend on the quality of contents but also on the delivery route employed. A number of delivery routes are in use for conducting FMT, which include upper gastrointestinal routes (UGI) i.e. nasogastric/nasojejunal tube, endoscopy, oral capsules and lower gastrointestinal routes (LGI) like retention enema, sigmoidoscopy or colonoscopy. Capsules, both conventional as well as colon targeted have been the most commonly used formulations. Surprisingly, the success rates with conventional gastric delivery capsules and colon targeted capsules were found to be quite similar indicating the sufficiency of the inoculum size to withstand the microbial loss in the gastric milieu. Patient compliance, cost effectiveness, comfort of administration, level of invasiveness, patient's hospital admission, risk of aspiration and infections, multiplicity of administration required, recurrence rate are the main factors that seem to influence the choice for route of administration of physicians. The best route for FMT has not been established yet. Extensive studies are required to understand the interplay of route adopted, type of donor, physical nature of sample (fresh or frozen), patient compliance and cost effectiveness to design an approach for the risk free, convenient and cost-effective administration route for FMT.


Assuntos
Cecostomia , Endoscopia do Sistema Digestório , Transplante de Microbiota Fecal , Gastroenteropatias/terapia , Microbioma Gastrointestinal , Animais , Cápsulas , Cecostomia/efeitos adversos , Cecostomia/instrumentação , Disbiose , Endoscopia do Sistema Digestório/efeitos adversos , Endoscopia do Sistema Digestório/instrumentação , Transplante de Microbiota Fecal/efeitos adversos , Transplante de Microbiota Fecal/instrumentação , Gastroenteropatias/microbiologia , Gastroenteropatias/fisiopatologia , Humanos , Resultado do Tratamento
10.
J Drug Target ; 28(10): 1053-1062, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32459518

RESUMO

Encapsulation techniques and materials, explored for addressing compromised probiotic gut survival, report significant production losses resulting in <10% entrapment. Presently, we report three-time enhanced entrapment (30 ± 1.2%) of Lactobacillus acidophilus (LAB) in calcium-alginate beads, by modifying process parameters and employing polyethylene glycol (PEG). Water-loving, viscolysing and osmotic-building effects of PEG create numerous, fine voids in the alginate gel allowing efficient diffusion of crosslinking calcium ions, resulting in less leaky beads. Eudragit S100 overcoat improved LAB survival by 690 times in simulated GIT stresses.In DMH-DSS induced colitis and precancerous lesions in rats, while free LAB failed to show any protection, pharmabiotic beads significantly (p < .05) reduced lipid peroxidation, increased antioxidant levels; decreased serum inflammatory burden; downregulated COX-2, iNOS, and c-Myc expression; elevated levels of the selected gut bacteria and SCFAs especially butyrate, all of which add up to antioxidant, anti-inflammatory, balanced gut biota, and ultimately anticancer effects.


Assuntos
Colite/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Lactobacillus acidophilus , Probióticos/farmacologia , Tecnologia Farmacêutica/métodos , Alginatos/química , Animais , Antioxidantes/metabolismo , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Ratos , Ratos Wistar
11.
Drug Deliv Transl Res ; 10(4): 919-944, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32270439

RESUMO

Statins, widely prescribed for cardiovascular diseases, are also being eyed for management of age-related macular degeneration (AMD). Poor bioavailability and blood-aqueous barrier may however limit significant ocular concentration of statins following oral administration. We for the first time propose and investigate local application of atorvastatin (ATS; representative statin) loaded into solid lipid nanoparticles (SLNs), as self-administrable eye drops. Insolubility, instability, and high molecular weight > 500 of ATS, and ensuring that SLNs reach posterior eye were the challenges to be met. ATS-SLNs, developed (2339/DEL/2014) using suitable components, quality-by-design (QBD) approach, and scalable hot high-pressure homogenization, were characterized and evaluated comprehensively for ocular suitability. ATS-SLNs were 8 and 12 times more bioavailable (AUC) in aqueous and vitreous humor, respectively, than free ATS. Three-tier (in vitro, ex vivo, and in vivo) ocular safety, higher corneal flux (2.5-fold), and improved stability (13.62 times) including photostability of ATS on incorporation in ATS-SLNs were established. Autoclavability and aqueous nature are the other highlights of ATS-SLNs. Presence of intact fluorescein-labeled SLNs (F-SLNs) in internal eye tissues post-in vivo application as eye drops provides direct evidence of successful delivery. Perinuclear fluorescence in ARPE-19 cells confirms the effective uptake of F-SLNs. Prolonged residence, up to 7 h, was attributed to the mucus-penetrating nature of ATS-SLNs. Graphical abstract.


Assuntos
Atorvastatina/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Lipídeos/administração & dosagem , Nanopartículas/administração & dosagem , Soluções Oftálmicas/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Atorvastatina/química , Atorvastatina/farmacocinética , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Córnea/metabolismo , Liberação Controlada de Fármacos , Células Epiteliais/efeitos dos fármacos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/química , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Lipídeos/química , Lipídeos/farmacocinética , Degeneração Macular/tratamento farmacológico , Masculino , Nanopartículas/química , Soluções Oftálmicas/química , Soluções Oftálmicas/farmacocinética , Permeabilidade , Coelhos , Ratos , Suínos
12.
Curr Drug Targets ; 20(10): 1008-1017, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30892161

RESUMO

Oral Cancer (OC) is a serious and growing problem which constitutes a huge burden on people in more and less economically developed countries alike. The scenario is clearly depicted from the increase in the expected number of new cases in the US diagnosed with OC from 49,670 people in 2016, to 49,750 cases in 2017. The situation is even more alarming in India, with 75,000 to 80,000 new cases being reported every year, thus making it the OC capital of the world. Leukoplakia, erythroplakia, oral lichen planus, oral submucous fibrosis, discoid lupus erythmatosus, hereditary disorders such as dyskeratosis congenital and epidermolisys bullosa are highlighted by WHO expert working group as the predisposing factors increasing the risk of OC. Consumption of tobacco and alcohol, genetic factors, and human papilloma virus are assigned as the factors contributing to the aetiology of OC. On the other hand, pathogenesis of OC involves not only apoptosis but also pain, inflammation and oxidative stress. Inspite of current treatment options (surgery, radiotherapy, and chemotherapy), OC is often associated with recurrence and formation of secondary primary tumours resulting in poor overall survival rates (∼50%). The intervention of nano technology-based drug delivery systems as therapeutics for cancers is often viewed as a cutting edge for technologists. Though ample literature on the usefulness of nano-coutured cancer therapeutics, rarely any product is in pipeline. Yet, despite all the hype about nanotechnology, there are few ongoing trials. This review discusses the current and future trends of nano-based drug delivery for the treatment of OC.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Bucais/tratamento farmacológico , Portadores de Fármacos/classificação , Humanos , Neoplasias Bucais/etiologia , Nanotecnologia , Fatores de Risco , Taxa de Sobrevida
13.
Int J Nanomedicine ; 14: 809-818, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30774335

RESUMO

BACKGROUND: Biosurfactants are amphipathic molecules of microbial origin that reduce surface and interfacial tension at gas-liquid-solid interfaces. Earlier, the biosurfactant was isolated and characterized in our laboratory from Candida parapsilosis. The property of the biosurfactant is further explored in this study by using quantum dots (QDs) as nanocarrier. MATERIALS AND METHODS: Graphene quantum dots (GQDs) were synthesized by bottom-up approach through pyrolysis of citric acid. GQDs were conjugated with both biosurfactant and folic acid (FA) using carbodiimide chemistry. The prepared GQD bioconjugate was studied for diagnostic and therapeutic effects against cancer cells. RESULTS AND DISCUSSION: Photoluminescence quantum yield (QY) of plain GQDs was measured as 12.8%. QY for biosurfactant conjugated GQDs and FA-biosurfactant conjugated GQDs was measured as 10.4% and 9.02%, respectively, and it was sufficient for targeting cancer cells. MTT assay showed that more than 90% of cells remained viable at concentration of 1 mg/mL, hence GQDs seemed to be non-toxic to cells. Biosurfactant conjugated GQDs caused 50% reduction in cellular viability within 24 hours. FA conjugation further increased the specificity of bioconjugated GQDs toward tumor cells, which is clearly evident from the drug internalization studies using confocal laser scanning microscopy. A higher amount of drug uptake was observed when bioconjugated GQDs were decorated with FA. CONCLUSION: The ability of GQD bioconjugate could be used as a theranostic tool for cancer. It is foreseen that in near future cancer can be detected and/or treated at an early stage by utilizing biosurfactant conjugated GQDs. Therefore, the proposed study would provide a stepping stone to improve the life of cancer patients.


Assuntos
Grafite/química , Neoplasias/diagnóstico , Neoplasias/terapia , Pontos Quânticos/química , Tensoativos/química , Nanomedicina Teranóstica/métodos , Sobrevivência Celular/efeitos dos fármacos , Fluorescência , Ácido Fólico/farmacologia , Humanos , Células MCF-7 , Neoplasias/patologia , Pontos Quânticos/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
14.
Phytother Res ; 32(10): 1950-1956, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29876980

RESUMO

Aim of the study was to evaluate a combination of ginger extract (GE; antioxidant, anti-inflammatory) and Lactobacillus acidophilus (LAB; probiotic), in DMH-DSS-induced inflammation-driven colon cancer, in Wistar rats. Effect of varying GE concentration on growth of LAB was assessed in vitro. Colonic histology and permeability, oxidative stress, serum proinflammatory cytokines, expression of selected genes, gut bacteria, and SCFA determination of gut content was monitored after treatment with agents alone or in combination, postdisease induction. Significant increase in LAB CFU was observed following 48 and 96 hr of incubation with GE; 0.4% w/v GE showed the best results and was used in the cobiotic. Cobiotic administration significantly reversed the DMH-DSS-induced colonic histological alterations. Significant (p < .05) reduction in lipid peroxidation and increase in antioxidant levels (catalase and SOD) was observed in cobiotic group, whereas individual agents did not show any effect. Restoration of colonic permeability, decrease in serum inflammatory burden, and downregulation of COX-2, iNOS, and c-Myc expression on treatment with cobiotic was significantly (p < .05) better than individual agents. Neither LAB nor cobiotic administration produced any change in gut bacteria nor SCFA levels, probably due to loss of LAB viability under adverse gut conditions. Study concludes that presented cobiotic has a promising therapeutic potential, which can be improved by a smartly designed formulation.


Assuntos
Inflamação/tratamento farmacológico , Lactobacillus acidophilus , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Probióticos , Zingiber officinale/química , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Carcinógenos , Neoplasias do Colo/tratamento farmacológico , Ciclo-Oxigenase 2/metabolismo , Regulação para Baixo , Interleucina-6/sangue , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/sangue
15.
Int J Biol Macromol ; 105(Pt 1): 81-91, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28690172

RESUMO

Presently, we explore a cobiotic-ginger extract (GE; antioxidant-antiinflammatory) and Lactobacillus acidophilus (LAB, probiotic), for control of oxidative-stress, inflammation and dysbiosis mediated gut ailments. Since orally administered LAB looses viability while GE is a gastric irritant with poor ADME, we encapsulated them into calcium-alginate beads. Water-loving, viscolysing, and osmotic-building effects of polyethylene glycol were used to address poor probiotic encapsulation (≤10%) by effective sealing of numerous fine voids formed in the alginate gel. Beads were systematically optimized for maximum entrapment (92±2.3% for GE, and 30±1.2% for LAB) and sustained release, and were coated with eudragit-S100 for colonic-targetability, as established by in-vitro release. In-vivo evaluation in DMH-DSS induced colitis and precancerous lesions, in rats, indicated attenuation of oxidative stress (catalase, SOD, LPO) and inflammatory burden (IL-6 and TNF-α), and downregulation of COX-2, iNOS, and c-Myc by both GE and LAB; restoration of colonic permeability by GE; and modulation of gut bacteria and SCFAs by LAB as the mechanisms of action. Complementing activities of GE and LAB in cobiotic beads lead to better reversals. Histology (H&E and toluidine blue) confirmed healing of precancerous lesions.


Assuntos
Alginatos/química , Colo/efeitos dos fármacos , Colo/microbiologia , Lactobacillus acidophilus/fisiologia , Microesferas , Extratos Vegetais/farmacologia , Zingiber officinale/química , Animais , Colo/patologia , Portadores de Fármacos/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Masculino , Probióticos/farmacologia , Ratos , Ratos Wistar
16.
Anticancer Agents Med Chem ; 17(5): 726-733, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27539478

RESUMO

BACKGROUND: Chemoprevention using natural agents has emerged as a new and promising strategy for reducing cancer burden. Sesamol, a water soluble lignin, is a potent antioxidant with potential anticancer activities. Its small size (molecular weight: 138.34g) coupled with easy permeability (log P: 1.29) results in its excessive systemic loss therefore, compromising local bioavailability. Furthermore, irritant nature of sesamol limits its application on skin per se. OBJECTIVE: Present study aims to evaluate chemopreventive efficacy of free and encapsulated (SLNs) sesamol, at gross and molecular level, in DMBA induced skin cancer animal model. METHODS: Evaluation is done in terms of tumor burden quantification, histological evaluation of skin, determination of oxidative stress, and quantification of apoptotic proteins, bcl-2 and bax, using both western blot analysis and immunofluorescence studies. RESULTS: Sesamol administration (both in free and encapsulated form) significantly decreased the tumor burden and lipid peroxidation level and increased anti-oxidant levels, thereby hampering the development and promotion of skin tumors. Further, downregulation of bcl-2 and stimulation of bax protein expression on treatment with both free and encapsulated sesamol was responsible for the induction of apoptosis in tumor cells. Encapsulating sesamol into SLNs not only reduced its irritant nature which limits its direct topical application but also improved its local targeting to skin. CONCLUSION: Both free and encapsulated sesamol demonstrated the inhibition of tumor progression by inducing skin cell apoptosis via bcl-2/bax mediated pathway.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Benzodioxóis/farmacologia , Fenóis/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Neoplasias Cutâneas/tratamento farmacológico , Proteína X Associada a bcl-2/biossíntese , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Benzodioxóis/síntese química , Benzodioxóis/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Fenóis/síntese química , Fenóis/química , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Relação Estrutura-Atividade
17.
Curr Pharm Des ; 22(27): 4160-72, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27290916

RESUMO

BACKGROUND: Multifaceted pathologies like cancers involve multiple targets. Failure of current treatment options modulating specific tumor target, evokes need for alternate approach of either combining several smart drugs or design a dirty drug that may simultaneously influence multiple targets to trigger a cascade of protective events complementing one another. METHODS: Present review tends to unravel the mechanism of anticancer action of ginger and also address issues, which may limit its realization as a biotherapeutic. RESULTS: Ginger exhibits a pleiotropy of antioxidant, anti-inflammatory, antiemetic, anticancer, and antimutagenic effects. In vivo and in vitro studies have established that phenolic components of ginger, particularly 6-gingerol and 6-shogaol induce apoptosis and autophagy and inhibit metastasis. The poor biological profile of ginger extract or its actives is due to its restricted biopharmaceutical properties. The gap in manifesting the curative/therapeutic effects of these agents can be plugged by assigning them with a suitable pharmaceutical couture. CONCLUSION: Hence, amalgamating the rational formulation design with observational folklore data available on herbal drugs/agents, complemented with scientific and precise in vitro and in vivo findings can bring out a class of safe, cheap, and effective curatives which can address multitarget diseases like cancers.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias/tratamento farmacológico , Zingiber officinale/química , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
18.
Environ Toxicol ; 31(5): 520-32, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25410024

RESUMO

Sesamol is a phenolic component of sesame seed oil, which has been established as an antioxidant and also possesses potential for hepatoprotection. However, its protective role in carbon tetrachloride (CCl4 ) induced sub-chronic hepatotoxicity has not been studied. Limited oral bioavailability (BA) and rapid elimination (as conjugates) in rats is reported for sesamol. Considering its significant antioxidant potential and compromised BA, we packaged sesamol into solid lipid nanoparticles (S-SLNs) to enhance its hepatoprotective bioactivity. S-SLNs prepared by microemulsification method were nearly spherical in shape with an average particle size of 120.30 nm and their oral administration at 8 mg/kg body weight (BW) showed significantly (p < 0.001) better hepatoprotection than free sesamol (FS) and a well established hepatoprotective antioxidant silymarin [SILY (25 mg/kg BW); p < 0.05) in CCl4 induced sub-chronic liver injury in rats. Evaluations were done in terms of histological changes in the liver tissue, liver injury markers (serum alanine aminotransferase, serum aspartate aminotransferase, and serum lactate dehydrogenase); oxidative stress markers (lipid peroxidation, superoxide dismutase, and reduced glutathione) and proinflammatory response marker (tumor necrosis factor-alpha).


Assuntos
Benzodioxóis/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Nanopartículas/química , Fenóis/farmacologia , Substâncias Protetoras/farmacologia , Administração Oral , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Benzodioxóis/química , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Glutationa/metabolismo , Hidroliases/sangue , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Óleos Voláteis/química , Tamanho da Partícula , Fenóis/química , Substâncias Protetoras/química , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Chem Biol Interact ; 244: 84-93, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26620693

RESUMO

AP9-cd, a novel lignan composition from Cedrus deodara has significant anticancer potential, and to further enhance its activity, it was lucratively encumbered into solid lipid nanoparticles (SLNs). These nanoparticles were formulated by micro-emulsion technique with 70% drug trap competence. AP9-cd-SLNs were regular, solid, globular particles in the range of 100-200 nm, which were confirmed by electron microscopic studies. Moreover, AP9-cd-SLNs were found to be stable for up to six months in terms of color, particle size, zeta potential, drug content and entrapment. AP9-cd-SLNs have 30-50% higher cytotoxic and apoptotic potential than the AP9-cd alone. The augmented anticancer potential of AP9-cd-SLNs was observed in cytotoxic IC50 value, apoptosis signaling cascade and in Ehrlich ascites tumor (EAT) model. AP9-cd-SLNs induce apoptosis in Molt-4 cells via both intrinsic and extrinsic pathway. Moreover, the dummy nanoparticles (SLNs without AP9-cd) did not have any cytotoxic effect in cancer as well as in normal cells. Consequently, SLNs of AP9-cd significantly augment the apoptotic and antitumor potential of AP9-cd. The present study provides a podium for ornamental the remedial latent via novel delivery systems like solid lipid nanoparticles.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Leucemia/tratamento farmacológico , Lignanas/administração & dosagem , Lignanas/farmacologia , Lipídeos/química , Nanopartículas/química , Neoplasias Experimentais/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Cedrus/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Leucemia/patologia , Lignanas/química , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/patologia , Tamanho da Partícula , Relação Estrutura-Atividade , Propriedades de Superfície
20.
J Microencapsul ; 32(5): 478-87, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26268954

RESUMO

CONTEXT: Sesamol, a potential antioxidant with marked anticancer potential suffers from issues of extensive tissue distribution and local gastric irritation on oral administration. OBJECTIVE: To develop multiunit gastro-retentive floating beads (S-FBs) for localised and prolonged release of sesamol to treat gastric cancers. MATERIALS AND METHODS: S-FBs prepared using calcium carbonate, sodium alginate and hydroxypropylmethyl cellulose (HPMC) in different proportions, were characterised and evaluated in vivo in N-methyl-N-nitro-N-nitroguanidine-induced gastric cancer in rats. Single oral dose plasma pharmacokinetic study was also performed for free sesamol and S-FBs. RESULTS AND DISCUSSION: Restraining sesamol in floating beads, significantly lowered the release (diffusion controlled) rate, increased t50% (31 times) and reduced its in vivo clearance (>1.5 times). Preclinical evaluation showed S-FBs (10 mg/kg) to be significantly better than free sesamol and better/equivalent to methotrexate (2 mg/kg). CONCLUSION: Most of the natural phytochemical or antioxidants show pretreatment effectiveness. We, however, developed and established S-FBs for sustained curative effect.


Assuntos
Benzodioxóis , Portadores de Fármacos , Neoplasias Experimentais/sangue , Neoplasias Experimentais/tratamento farmacológico , Fenóis , Neoplasias Gástricas/sangue , Neoplasias Gástricas/tratamento farmacológico , Animais , Benzodioxóis/química , Benzodioxóis/farmacocinética , Benzodioxóis/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Masculino , Neoplasias Experimentais/induzido quimicamente , Fenóis/química , Fenóis/farmacocinética , Fenóis/farmacologia , Ratos , Ratos Wistar , Neoplasias Gástricas/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA